
Run-time Fallback and Multiboot Technique for Embedded Platform

using Low-Cost Spartan-6 FPGA

AHMED HANAFI, MOHAMMED KARIM

Department of Science and Technology of Information and Communication STIC

Faculty of Sciences Dhar el Mahraz

University Sidi Mohammed Ben Abdellah

B.P 1796, Fès-Atlas, 30003 Morocco.

ahmedhanafi72@gmail.com http://www.fsdmfes.ac.ma/

Abstract: - This paper aims at demonstrating the whole process allowing implementing a robust in-system

update solution for Microblaze-based embedded systems using low-cost and low-power consuming Spartan-6

FPGA. In this work, we design a run-time full reconfigurable embedded platform based on the Spartan-6

Multiboot and fallback features. The FPGA Multiboot feature enables switching between two or more con-

figuration files, on the fly (during normal operation), from an external SPI Flash memory. When an error or an

interruption is detected during the Multiboot configuration process, the FPGA triggers fallback feature that

ensures the configuration with a golden “safe” image.

Embedded development kit (EDK) prepared by Xilinx company is employed to implement the embedded

platform on a Spartan-6 evaluation board (i.e., SP605). Based on the Internal Configuration Access Port (ICAP)

primitive in the FPGA fabric, we used Xilinx LogiCORE IP AXI HWICAP (Advanced eXtensible Interface

Hardware ICAP) core to write software programs that modify the circuit structure and functionality during run-

time. This IP Core has been originally designed to support the Run-time Partial Reconfiguration (PR) feature

for the Virtex-4, Virtex-5, Virtex-6 family FPGA. Xilinx added support for Spartan-6 family FPGA in 2010

and we decide to use it to facilitate the run-time full reconfiguration process.

Key-Words: - Run-time full reconfiguration, Multiboot, Fallback, ICAP, Microblaze, AXI HWICAP, FPGA

1 Introduction
By exploiting the Multiboot and fallback features of

an FPGA such as Spartan-6, the designers can

develop dynamic full reconfigurable embedded

systems in a wide range of applications that have to

limit development cost, include upgrade capability

and manage configuration errors (Space and

automobile applications, industrial control systems).

This kind of application incorporate Embedded

Software System based on a soft processor, such as

Microblaze, that will be used to achieve and

facilitate the self-configuration.

As far as we know, Xilinx is the main world’s

leading provider of run-time reconfiguration and

soft error mitigation features. The low-cost and low-

power consuming Spartan-6 family FPGAs provides

a dedicated Internal Configuration Access Port

(ICAP), which directly interfaces to the

configuration memory. This port allows

modification of the logic of the device

autonomously at run-time. The ICAP_SPARTAN6

primitive, is the hardwired FPGA logic that provides

logic access to the Spartan-6 configuration interface,

allowing the designer to access configuration

registers, readback configuration data, and partially

or full reconfigure the device [1]. The work

descripted in this paper provides an easy and fast

Embedded Software solution to implement the

Multiboot and fallback features, using the ICAP

primitive.

The paper is organized as follows. In section 2,

an overview of some related work on run-time full

and partial reconfiguration is provided, followed by

the specificities of our work. Section 3 gives a brief

description of the Spartan-6 FPGA configuration

control logic, and introduces the ICAP interface

used for dynamic reconfiguration. In section 4,

implementation of Multiboot and fallback features

are described, while in sections 5 implementation

details (both at hardware and software level) of the

proposed run-time full reconfigurable embedded

platform are described. Finally, section 6 gives the

implementation results, while conclusions and

future works are drawn in section 7.

2 Related Works
Most of related works use the ICAP port to the run-

time partial reconfiguration. Therefore Koch et al.

[2] have demonstrated systems based on Spartan-6

series FPGAs that provide full support for active

partial run-time reconfiguration. They have used

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 208 Volume 14, 2015

ICAP with 16-bits mode at 100 MHz, but instead of

relying on a self-reconfiguration, as is the case of

this work, they used PC (UART interface) to access

the ICAP and control the configuration.

Ming Liu et al. [3] investigate the performance

of various ICAP architectures such as

OPB_HWICAP and XPS_HWICAP. They use a

Virtex-4 FPGA but the ICAP architecture

AXI_HWICAP and the full run-time

reconfiguration were not included in the study.

Otero et al. [4] design a partial reconfigurable

platform based on the Spartan-6 FPGA including

two implementation options. The first one is a

software solution build on the top of both, software

and hardware design XPS_HWICAP. The second

one is a hardware solution based on an enhanced

HWICAP peripheral core.

For work that focuses on the Multiboot and the

full run-time reconfiguration, Khalil and

Mohammed [5] use the STARTUP_SPARTAN3

primitive, provided by Xilinx to design a Multiboot

embedded system in the Spartan-3E FPGA. But

fallback feature was not provided and the self-

configuration was achieved with the microcontroller

core PicoBlaze.

Our synthesis work proposes to implement the IP

core AXI_HWICAP in a Microblaze-based

embedded system to achieve a run-time full

reconfigurable embedded platform. The practical

software solution described for implement

Multiboot and fallback features, uses the low-level

macros and functions of the AXI_HWICAP core.

3 Reconfiguration Details of Spartan6

Devices

3.1 Spartan-6 Configuration Control Logic
The functionality of each configurable element

within the FPGA (CLBs, DSPs or BRAMs) is

controlled by configuration data (organized as 16-bit

words) stored in the configuration memory. The

modification at run-time of its content is done by

reading or writing to the configuration registers,

using the ICAP_SPARTAN6 primitive which has a

separate bus as shown in figure 1.

All configuration data (register writes) used in

our implementation is encapsulated into a Type1

packet which contain 2 sections: Header and Data

[6]. Table 1 shows the Header section (16-bit word)

used in configuration data: only the Write command

is used (Code Operation = 10).

Fig.1: The ICAP primitive on Spartan-6 FPGA

Run-time full reconfiguration implies to provide

some configuration commands. Table 2 summarizes

the main configuration registers of interest for this

purpose:

 COR register set the configuration options.

 MODE_REG register contains the mode

setting which can be used for the reboot. We

used bitstream mode (required for MultiBoot

and Fallback), and buswidth SPI by 1.

 GENERAL1,2 registers set the start address

of the Multiboot bitstream.

 GENERAL3,4 registers set the start address

of the Golden bitstream.

 CMD register used to perform configuration

functions.

Table 1: Type 1 Packet Header
Type 1 Operation Register Address Word count

[15:13] [12:12] [10:5] [4:0]

001 10 xxxxxx xxxxx

Table 2: Used Configuration Registers
Register Address Description

CMD 6’h05 Command register

COR2 6’h0B Set configuration option

HC_OPT_REG 6’h10 House clean option register

GENERAL1 6’h13 Loadable program address (LPA)

GENERAL2 6’h14 LPA and SPI opcode

GENERAL3 6’h15 Golden bitstream address (GBA)

GENERAL4 6’h16 GBA and SPI opcode

MODE_REG 6’h18 Reboot mode

3.2 Xilinx IP Core AXI_HWICAP
In the Xilinx design support, the IP Core

AXI_HWICAP is typically used to carry out

dynamic and partial reconfiguration of the Spartan-6

FPGAs [7]. As shown in figure 2, this core has the

structure of a peripheral that use the ARM AXI

(Advanced eXtensible Interface) [8] bus technology

as interface with the embedded processor, and

integrates the ICAP reconfiguration port together

with a finite state machine in charge of generating

the necessary control signals. For writes to the ICAP

(FPGA reconfiguration), the required configuration

data loaded from external memory (SPI Flash

FPGA

Configuration

Memory

I(15:0)

ICAP_SPARTAN6

O(15:0)

Busy

Wr/Rd

CE

CLK

I(15:0)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 209 Volume 14, 2015

memory) are stored within a Write First In First Out

(FIFO), from where it can be sent to the ICAP.

Fig. 2: Block Diagram for the AXI HWICAP

The software application is in charge of sending

correct configuration commands to the FIFO. Thus,

drivers are available to control the operations of the

AXI_HWICAP core from the embedded processor.

Functionality included on functions within these

drivers will be used to read and write from ICAP.

4 Implementation of Multiboot and

Fallback Features
Spartan-6 FPGA has dedicated Multiboot logic,

which is used for both fallback and Multiboot

reconfiguration. In the chosen Master Serial

Configuration Mode, we used the Master Serial

Peripheral (SPI) interface to allow the Spartan-6

FPGA to configure itself from a directly attached

SPI serial Flash PROM [6]. We employ the on-

board Winbond SPI Flash memory of the Xilinx

Spartan-6 FPGA SP605 Evaluation Kit. Figure 3

show the connection used for an SPI configuration

with data width of x1 and standard SPI mode.
The reconfiguration of FPGA can be triggers

after the device is powered up, after the

PROGRAM_B pin is pulsed low (SW3 Pushbutton),

after the IPROG command (internal

PROGRAM_B), or during a fallback retry

configuration sequence. In our implementation,

there are four images for Multiboot/fallback

configuration, stored in the same SPI Flash memory

as shown in Figure 4:

 The first image is the Header, a small

bitstream who must start at address 0 to

trigger the reconfiguration. It contains a set of

commands sent to the configuration memory

using the ICAP_SPARTAN6 primitive.

Table 3 shows the sequence of commands

used in our Header file.

 The second image is the fallback or golden

bitstream, This image can reside at any

address specified in GENERAL3,4 registers.

 The remaining two images are the two

Multiboot bitstream. GENERAL1,2 registers

values must be set to the location of the next

bistream (one of the two images) that the

user plans to configure first.

Fig. 3: Spartan-6 FPGA SPI Configuration Interface

Fig. 4: SPI Flash memory map

Table 3: Header Bitstream for IPROG through

ICAP
Configuration

data (Hex)
Table Description

FFFF FFFF Dummy word

AA99 5566 Synchronization word

31E1 FFFF Enable Reset on Error : COR2 register

3261

3281

xxxx

03xx

Set GENERAL1,2 registers with the start

address of multiboot image and the SPI

flash memory opcode (0x03 for Winbond)

32A1

32C1

0000

0301

Set the GENERAL3,4 registers with the

start address of golden (fallback) image

and the SPI flash memory opcode

3301 2100 Set Reboot mode: MODE_REG register

3201 001F Do not skip initialization

30A1 000E Send IPROG command : CMD register

2000 2000 No Operation

I(15:0)

Spartan-6 FPGA

CLK

CS_B

IO0_DIN

IO1_DOUT

SPI Configuration Interface

CCLK

CSO_B

MOSI

DIN

INIT_B

DONE

PROGRAM_B

Winbond SPI
W25Q64VS

33
0

4,
7k

4,
7k

Vcc2V5

SW3 DS2

I(15:0)

AXI HWICAP Core AXI-Lite Slave

Interface

IP2INTC_lptr

ICAP_CLK

AXI4-Lite Slave Burst Interface

HWICAP

Interrupt Control Unit
Read Write FIFOs
Internal Registers

ICAP State
machine

ICAP

IPIC_IF

0x000000
Header

Second Multiboot

Bitstream

Golden

0x7FFFFF

(8MByte)

First Multiboot

Bitstream

First Image

Second Image

Multiboot

Images

0x200000

0x400000

0x010000

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 210 Volume 14, 2015

During configuration, each image has three

“strike” allotted to it. If an error is detected (CRC

error or watchdog timer time-out error), the strike

count (BOOTSTS register) increments and

configuration restart. The sequence of full

reconfiguration is:

 At power-up, the configuration memory is

cleared and the start address 0 is used during

FPGA configuration. The Header image set

the REGISTER1,2,3,4 and issues an IPROG

command using ICAP.

 The special feature of IPROG is that it not

reset the dedicated reconfiguration logic. So,

the start address set in REGISTER1,2

(Multiboot image) is used during next

reconfiguration instead of the default address

(zero).

 If the configuration fallback occurs, the

golden bitstream is reached. Its start address

is defined by the values of GENERAL3,4

registers.

5 Spartan-6 FPGA Run-Time Full

Reconfigurable Embedded Platform

5.1 Hardware Design
The embedded platform is implemented on the

Xilinx SP605 Evaluation Kit using Xilinx Platform

Studio (XPS) provided by Embedded Development

Kit (EDK) of Xilinx.

The architecture shown in figure 5 is created

using the Base System Builder (BSB) wizard within

XPS and it is based on the AXI interconnect, which

operates at 50 MHz. Our design includes the main

following IPs cores:

 SPI Flash interface (axi_quad_spi) operating

at 100MHz. The used Winbond SPI Flash

memory W25Q64BV can run up to 80MHz in

standard SPI mode, then we changed the

C_SCK_RATIO parameter in AXI Quad SPI

core to 2. This will run SPI Flash at 50MHz.

 General Purpose Input Output (GPIO)

operating at 50MHz and used to communicate

with LEDs, and Push Buttons. Push Buttons

will trigger the reprogramming and download

of Mutliboot bitsream files from extenal SPI

flash memory, and the corruption of the

Multiboot images data.

 The AXI_HWICAP core used to carry out

dynamic and full reconfiguration of the

Spartan-6 FPGA.

 UART (Universal Asynchronous Receiver

Transmitter) interface provide serial

communication with a PC via an

UART/USB converter. It will enable

debugging and monitoring of our

implementation.

This reference hardware platform has been

exported to SDK to be the basis of all software

work.

Fig. 5: Hardware Architecture of the reference system.

128 MB

DDR3 SDRAM

8 MB Winbond

QUAD SPI Flash

LED’saxi_gpio

Push Buttons

USB - UART

axi_hwicap

axi_gpio

axi_uartlite

axi_quad_spi

A
X

I4

AXI DDR3

Memory

Controller

I-cache 4kB

D cache 4kB

BRAM

32KB

A
X

I4
 L

ite

LMB Bus

OSC @ 27MHz
100MHz
600MHz
50MHz

MDM

debug_module

DEBUG

JTAG
COM

Monitoring

AXI Bus

AXILite Bus

Microblaze

Interrupt

Controller

axi_BRAM

sys_reset

axi_Timer

Clock

generator

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 211 Volume 14, 2015

5.2 Software Design

5.2.1 Software Applications

The software applications consist of C projects

developed in Software Development Kit (SDK). To

implement and test Multiboot/fallback features, we

used the low-level macros and functions of the

AXI_HWICAP core. Thus, the corresponding

software application to each hardware configuration

(Golden, First and second Multiboot images) will

include a low-level function named

HwIcapLowLevel() and set with the base address of

the update image. The function will enable FPGA

reconfiguration by personalizing it with state

machine for ICAP_SPARTAN6 reboot sequence

based on the IPROG command as described in

section 4. This low-level function will execute the

following main tasks:

 Initiate the Abort sequence in the ICAP by

setting the Abort bit in the Control Registers.

 Write the personalized command sequence to

the Write FIFO Register.

 Start Transfer data from the FIFO to the

ICAP device by writing "0x00000001" into

the Control Register.

 Poll for Done bit in the Status Register, which

indicates end of transfer.

 Wait till the Write bit is cleared in the CR

register indicating the successful completion

of the configuration.

Figure 6 shows part of the code of the

HwIcapLowLevel() function corresponding to

software application of the First Multiboot image.

5.2.2 Test of the fallback feature

To test the fallback feature, we used a function to

corrupt the Multiboot image stored in the SPI flash

memory by writing 0xFF data in the ten first

addresses, to force an error when the image is

loaded. Writing access to the SPI Flash memory is

simplified by the use of Xilinx In-System Flash

(Xilisf) library [9].

Thus, for all software applications, we used:

 The same Board Support Package (BSP) after

having added and configured the ISF library

to work with the used Winbond SPI Flash

memory.

 A function named corrupt_multiboot_image()

using a set of pre-defined functions of the

Xilisf library to write to the Serial Flash

memory device.

Fig. 6: The HwIcapLowLevel() function.

5.2.3 Programming the SPI Flash memory

To program the SPI Flash memory, we have to

generate an MCS file (Intel MCS-86 Hexadecimal

Format) from:

 The "Header" file in hexadecimal (HEX)

format. We used a hex editor (the shareware

HexEdit) to populate it with the sequences of

commands described in Table 3.

 The bistream files of the Golden image and

the two Multiboot images.

Fig. 7: Executable script to generate the final MCS file.

static u32 Sequence1[BITSTREAM_LENGTH] =

{

0xFFFF, /* Dummy Word */

0xAA99, /* Sync Word*/

0x5566, /* Sync Word*/

……….

0x30A1,

0x000E,

……….

};

u32 HwIcapLowLevel(u32 BaseAddress, u32 iprog_address)

{

………….

/*Initiate the Abort sequence in the ICAP */

RegData = XHwIcap_ReadReg(BaseAddress, XHI_CR_OFFSET);

XHwIcap_WriteReg(BaseAddress, XHI_CR_OFFSET, RegData |

 XHI_CR_SW_ABORT_MASK);

/*Write command sequence to the FIFO */

………….

for (Index = 0; Index < BITSTREAM_LENGTH; Index++) {

 XHwIcap_WriteReg(BaseAddress, XHI_WF_OFFSET, Sequence1[Index]);

}

………….

/*Start the transfer of the data from the FIFO to the ICAP device */

XHwIcap_WriteReg(BaseAddress, XHI_CR_OFFSET,

 XHI_CR_WRITE_MASK);

/* Poll for done, which indicates end of transfer */

Retries = 0;

while ((XHwIcap_ReadReg(BaseAddress, XHI_SR_OFFSET) &

XHI_SR_DONE_MASK) != XHI_SR_DONE_MASK) {

 Retries++;

 if (Retries > XHI_MAX_RETRIES) {

return XST_FAILURE;

 }

}

/* Wait till the Write bit is cleared in the CR register */

while ((XHwIcap_ReadReg(BaseAddress, XHI_CR_OFFSET)) &

XHI_CR_WRITE_MASK);

………….

}

cd <project_path>\implementation

bitgen -w -g next_config_register_write:Disable -g reset_on_err:Yes -g spi_buswidth:1 -bd <Project_path>\Debug\Embedded_app_1.elf system.ncd Embedded_app_1.bit

bitgen -w -g next_config_register_write:Disable -g reset_on_err:Yes -g spi_buswidth:1 -bd <Project_path>\Debug\Embedded_app_2.elf system.ncd Embedded_app_2.bit

bitgen -w -g next_config_register_write:Enable -g reset_on_err:Yes -g spi_buswidth:1 -bd <Project_path>\Debug\\Golden.elf system.ncd Golden.bit

promgen -w -p mcs -r header.hex -o header.mcs

promgen -w -p mcs -spi -s 16384 -u 010000 Golden.bit -u 200000 Embedded_app_1.bit -u 400000 Embedded_app_2.bit -o golden_multiboot.mcs

type header.mcs golden_multiboot.mcs > header_golden_multiboot.mcs

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 212 Volume 14, 2015

The MCS file contains ASCII strings that define

the storage address and data file. It can be created

by the iMPACT software [10] or the

BitGen/PROMGen commands [11]. We chose to

use the PROMGen and BitGen commands. Figure 8

summarize the software flow for creating a MCS

file and Figure 7 show the build_script.bat file used

to generate the final header_golden_multiboot.mcs

file according with the SPI Flash memory map

described in Figure 4.

Figure 9 resume the whole process allowing

implementation of the Multiboot and Fallback

features.

6 Implementation, Test and Results
A serial terminal program, such as Tera Term, will

be set to debug and monitor the various steps of the

implementation test. We used the GPIO Push

Buttons as follows (see Figure 10 in the next page):

 SW7 and SW8 used to trigger the download

of one of the two Multiboot images.

 SW5 used to corrupt the data of the Mulitboot

images.

 Create design in Base System Builder
 Update design
 Implementation to Bitstream

Export to SDK

XPS

SDK

Embedded_app_1.elf

Embedded_app_2.bit

PROMGen -w -p mcs -r

header.mcs

Header.hex

HEXEDIT

First Design Second Design

Embedded_app_2.elf

BitGen -w -g -bd

golden.elf

Embedded_app_1.bit

Golden.bit

BitGen -w -g -bdBitGen -w -g -bd

PROMGen -w -p mcs -spi -s -u

Golden_multiboot.mcs

TYPE

Header_golden_multiboot.mcs

.ncd file.ncd file

Applications Development
Golden

Embedded_app_1
Embedded_app_2

Fig. 8: Software flow for creating the MCS file

Multiboot Controller
axi_hwicap

§ Track multiboot Attempts
via BOOTSTS register.

§ Issue reboot command to
reload update multiboot
image.

Design Requirements

Spartan-6 Designs

Flash memory
access

§ Read multiboot/
fallback images

§ Corrupt multiboot
images.

Second
Multiboot
Bitstream

Golden

First Multiboot
Bitstream0x200000

0x400000

0x010000

Flow Diagram

1. Power-up

§ Use Header image at the start address 0 to FPGA configuration
§ Set General 1,2 registers with Multiboot Image address.
§ Issue Reboot by IPROG command.

2. Multiboot

§ Use Multiboot image at the address specified by General 1,2
registers to FPGA configuration

§ Run specified design with debugging messages sent via UART.
Following functions are used to test Multiboot and Fallback
features :

§ Header image :
Manually created with a sequence of command to
IPROG through ICAP primitive.

§ Multiboot and golden image :
Created with Embedded development kit (EDK) of Xilinx
company.

§ Programming SPI Flash memory :
Using a MCS file (Intel MCS-86 Hexadecimal Format)
generated with BitGen/PROMGen commands.

GPIO_Out() and GPIO_In()

Customize behaviors of GIPO Leds for each multiboot image

fpga_iprog(address) and HwIcapLowLevel()

§ Re-image flash with "address" the location of update image.
§ Issue reboot by IPROG command.

corrupt_multiboot_image()

Corrupt specified multiboot image by writing data in SPI memory

3. Fallback

§ Use Golden image at the address specified by General 3,4 registers to FPGA configuration
§ Run specified design with debugging messages sent via UART.
§ Issue reboot by pulse PROGRAM_B or power cycle.

Header
0x000000

SPI Flash
memory map

Configuration Fails
Attempt up to 3 times and increment Strike Count

Fig. 9: Process logic model of the complete system.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 213 Volume 14, 2015

Fig. 10: The SP605 Platform used for

implementation.

The execution of each test application includes

customized behaviors of the GPIO Leds and

messages sent via UART. Figure 11 shows an

example of running results.

To test the run-time fallback feature, we used the

iMPACT software to read the BOOTSTS

configuration register that can store the potential

errors of a MultiBoot:

 VALID_0 bit is updated with the current

status.

 FALLBACK_1 bit is updated if fallback

occurs.

 WTO_ERROR_1 bit is updated if watchdog

time out error occurs.

 CRC_ERROR_1 bit is updated if CRC error

occurs.

Fig. 11: Terminal Window showing debugging and

monitoring

Figure 12 shows the contents of BOOTSTS

register after a successful reconfiguration with a

Multiboot image and figure 13 shows the contents

of the same register when a fallback occurs.

Fig. 12: The BOOTSTS status after successful

reconfiguration.

Fig. 13: The BOOTSTS status after a fallback

occurs.

7 Conclusions and Future Works
In this paper, we have designed a run-time full

reconfigurable embedded platform using a Fallback

MultiBoot solution with a straightforward update

bitstream overwrite method and a sequential try-

and-recover configuration method. The FPGA tries

to configure from the update bitstream, and if the

FPGA detects a configuration error, it initiates a

reconfiguration Fallback with a known good design

(golden image). However, the configuration time for

the Fallback case can be twice as long as the

standard configuration time. The method also

optimizes the use of an on-board SPI flash memory

in any embedded system with limited memory

resources.

Mode pins

01 : SPI mode

SW3

PROG Button

GPIO

Pushbuttons

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 214 Volume 14, 2015

Successful achievement of this work will allow

us, as future work, design and implementation of an

embedded platform with remote FPGA update

capability that enables update systems with design

patches or enhanced functionality. The new method

of implementation will place the responsibility of

error recovery on the programming operation via a

simple adjustment to the programming algorithm for

the bitstream update process. The aim is to propose

a Fallback MultiBoot solution more robust, and

quick to configure in all cases.

References:

[1] UG615 Xilinx Guide, Spartan-6 Libraries

Guide for HDL Designs, 2012, pp: 121-122.

http://www.xilinx.com/support/documentation/

sw_manuals/xilinx14_1/spartan6_hdl.pdf.

[2] Koch, D., C. Beckhoff and J. Tørrison,

Advanced partial run-time reconfiguration on

Spartan-6 FPGAs. International Conference on

Field-Programmable Technology, Dec. 8-10,

2010, IEEE Xplore Press, Beijing, pp: 361-364.

[3] Liu, M., W. Kuehn, Z. Lu, and A. Jantsch,

Run-Time Partial Reconfiguration Speed

Investigation And Architectural Design Space

Exploration. Inter-national Conference on Field

Programmable Logic and Applications, Aug.

31-Sept. 2, 2009, IEEE Xplore Press, Prague,

pp: 498-502.

[4] Otero, A., M. Llinás, M. L. Lombardo, Jorge

Portilla, E. de la Torre and T. Riesgo. Cost and

Energy Efficient Reconfigurable Embedded

Platform Using Spartan-6 FPGAs,

Proceedings of the SPIE, Volume 8067, VLSI

Circuits and Systems V, May 03, 2011.

[5] Khalil, M. R. and S. A. Mohammed. Using

Multi-boot Technique to Create a Multiple

Embedded Designed Systems, Journal of

Theoretical and Applied Information

Technology, Vol.34, No.1, 2011, pp. 80- 87.

[6] UG380 Xilinx Guide, Spartan-6 FPGA

Configuration User Guide, January 23, 2013,

pp: 24-27, 92-105

http://www.xilinx.com/support/documentation/

user_guides/ug380.pdf.

[7] DS817 Xilinx IP Documentation. LogiCORE

IP AXI HWICAP, 2012.

http://www.xilinx.com/support/documentation/i

p_documentation/axi_hwicap/v2_03_a/ds817_a

xi_hwicap.pdf.

[8] UG761 Xilinx Guide, AXI Reference Guide,

November 15, 2012.

http://www.xilinx.com/support/documentation/i

p_documentation/axi_ref_guide/latest/ug761_a

xi_reference_guide.pdf.

[9] UG643 Xilinx Guide, OS and Libraries

Document Collection, 2012, pp: 173-186.

http://www.xilinx.com/support/documentation/

sw_manuals/xilinx14_2/oslib_rm.pdf.

[10] Hanafi, A., and M. Karim. Optimizing the use

of an SPI Flash PROM in Microblaze-Based

Embedded Systems, International Journal of

Advanced Computer Science and Applications,

Vol.4 No.10, 2013, pp. 109-114.

[11] UG628 Xilinx Guide, Command Line Tools

User Guide, 2012, pp: 173-186.

http://www.xilinx.com/support/documentation/

sw_manuals/xilinx13_4/devref.pdf.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ahmed Hanafi, Mohammed Karim

E-ISSN: 2224-266X 215 Volume 14, 2015

